
Encoding Classifications into Lightweight
Ontologies ?

Fausto Giunchiglia, Maurizio Marchese, Ilya Zaihrayeu
{fausto, marchese, ilya}@dit.unitn.it

Department of Information and Communication Technology
University of Trento, Italy

Abstract. Classifications have been used for centuries with the goal
of cataloguing and searching large sets of objects. In the early days it
was mainly books; lately it has also become Web pages, pictures and
any kind of digital resources. Classifications describe their contents us-
ing natural language labels, an approach which has proved very effective
in manual classification. However natural language labels show their lim-
itations when one tries to automate the process, as they make it very
hard to reason about classifications and their contents. In this paper we
introduce the novel notion of Formal Classification, as a graph structure
where labels are written in a propositional concept language. Formal
Classifications turn out to be some form of lightweight ontologies. This,
in turn, allows us to reason about them, to associate to each node a
normal form formula which univocally describes its contents, and to re-
duce document classification and query answering to reasoning about
subsumption.

1 Introduction

In today’s information society, as the amount of information grows larger, it
becomes essential to develop efficient ways to summarize and navigate informa-
tion from large, multivariate data sets. The field of classification supports these
tasks, as it investigates how sets of “objects” can be summarized into a small
number of classes, and it also provides methods to assist the search of such “ob-
jects” [11]. In the past centuries, classification has been the domain of librarians
and archivists. Lately a lot of interest has focused also on the management of
the information present in the web: see for instance the WWW Virtual Library
project1, or the web directories of search engines like Google, or Yahoo!.

Standard classification methodologies amount to manually organizing topics
into hierarchies. Hierarchical library classification systems (such as the Dewey
? This paper is an integrated and extended version of two papers: the first with title

“Towards a Theory of Formal Classification” was presented at the 2005 International
Workshop on Context and Ontologies; the second with title “Encoding Classifications
into Lightweight Ontologies” was presented at the 2006 European Semantic Web
Conference.

1 The WWW Virtual Library project, see http://vlib.org/.



Decimal Classification System (DDC) [3] or the Library of Congress classifica-
tion system (LCC)2) are attempts to develop static, hierarchical classification
structures into which all of human knowledge can be classified.

More recently, many search engines like Google, Yahoo as well as many eCom-
merce vendors, like Amazon, offer classification hierarchies (i.e., web directories)
to search for relevant items. Such web directories are sometimes referred to as
lightweight ontologies [29]. However, as such, they lack at least one important
property that ontologies must have: ontologies must be represented in a formal
language, which can then be used for automating reasoning [21]. None of the ex-
isting human crafted classifications possesses this property. Because classification
hierarchies are written in natural language, it is very hard to automate the clas-
sification task, and, as a consequence, standard classification approaches amount
to manually classifying objects into classes. Examples include DMoz, a human
edited web directory, which “powers the core directory services for the most pop-
ular portals and search engines on the Web, including AOL Search, Netscape
Search, Google, Lycos, DirectHit, and HotBot, and hundreds of others” [28].

Although all the above mentioned classifications are based on well-founded
classification methodologies, they have a number of limitations:

– the semantics of a given category is implicitly codified in a natural language
label, which may be ambiguous and may therefore be interpreted differently
by different classifiers;

– a link, connecting two nodes, may also be ambiguous in the sense that it may
be considered to specify the meaning of the child node, of the parent node,
or of both. For instance, a link connecting the parent node “programming”
with its child node “Java” may, or may not mean that (a) the parent node
means “computer programming” (and not, for example, “events schedul-
ing”); (b) that the child node means “Java, the programming language”
(and not “Java, the island”); or (c) that the parent node’s meaning excludes
the meaning of the child node, i.e., it is “programming and not Java”;

– as a consequence of the previous two items, the classification task also be-
comes ambiguous in the sense that different classifiers may classify the same
objects differently, based on their subjective opinion. This observation has an
impact in particular on the fact that both current tasks of classification and
search by means of browsing do not scale to large amounts of information.

In the present paper we propose an approach to converting classifications
into Formal Classifications, or lightweight ontologies, thus eliminating the three
ambiguities discussed above. This in turn allows us to automate, through propo-
sitional reasoning, the essential tasks of document classification and query an-
swering. Concretely, we propose a three step approach:

– first, we convert a classification into a new structure, which we call Formal
Classification (FC ), where all the labels are expressed in a propositional
Description Logic (DL) language (i.e., a DL language without roles) [1];

2 The Library of Congress Classification system, see
http://www.loc.gov/catdir/cpso/lcco/lcco.html/.



– second, we convert a FC into a Normalized Formal Classification (NFC ).
In NFCs each node’s label is a propositional DL formula, which univocally
codifies the meaning of the node in the classification, taking into account
both the label of the node and its position within the classification;

– third, we encode document classification and query answering in NFCs as
a propositional satisfiability (SAT) problem, and solve it using a sound and
complete SAT engine.

NFCs are full-fledged lightweight ontologies, and have many nice properties.
Among them:

– NFC node labels univocally codify the set of documents which can be clas-
sified in these nodes;

– NFCs are taxonomies in the sense that, from the root down to the leaves,
labels of child nodes are subsumed by the labels of their parent nodes;

– as nodes’ labels codify the position of the nodes in the hierarchy, document
classification and query answering can be done simply by analyzing the set
of labels. There is no need to inspect the edge structure of the NFC.

The remainder of the paper is organized as follows. In Section 2 we introduce
classifications and discuss how they are currently used in real use cases. In Sec-
tion 3 we motivate a formal approach to dealing with classifications. In Section 4
we introduce the notion of FC as a way to disambiguate labels in classifications.
In Section 5 we discuss how we disambiguate links in classifications by introduc-
ing the notion of NFC. In Section 6 and Section 7 we show how the two main
operations performed on classifications, namely classification and search, can be
fully automated in NFCs by means of propositional reasoning. In Section 8 we
discuss related work. Section 9 summarizes the results and concludes the paper.

2 Classifications

Classifications are hierarchical structures used to organize large amounts of ob-
jects [17]. These objects can be of many different types, depending on the charac-
teristics and uses of the classification itself. In a library, they are mainly books
or journals; in a file system, they can be any kind of file (e.g., text files, im-
ages, applications); in the directories of Web portals, the objects are pointers to
Web pages; in market places, catalogs organize either product data or service
titles. Classifications are useful for both object classification and retrieval. Users
browse the hierarchies and catalogue or access the objects associated with differ-
ent concepts, which are described by natural languages labels. Noteworthy, many
widely used classifications impose a simple structure of a rooted tree. Examples
of tree-like classifications are DMoz, DDC, Amazon, directories of Google and
Yahoo, file system directories, and many others3.

We define the notion of Classification as follows:
3 While making this statement we excluded from consideration secondary classification

links normally used for improving navigability and which make the classification a
DAG. An example of such links is the “related” links of DMoz.



Definition 1 (Classification) A Classification is a rooted tree C = 〈N, E, L〉
where N is a finite set of nodes, E is a set of edges on N , and L is is a finite
set of labels expressed in natural language, such that for any node ni ∈ N , there
is one and only one label li ∈ L.

Classifications, as tree-like structures with natural language node labels, are
used in a variety of domains such as standardization (e.g., eCl@ss [4]), controlled
thesauri (e.g., MeSH [27]), and many others. Depending on their target applica-
tion, classifications and their elements are given a specific interpretation and can
therefore be treated differently. In this paper, we see classifications as objects
whose primary purpose is the classification of and search for documents. We
therefore define the classification semantics as strongly related to documents,
and we define it at three levels:

– Label: labels, as such, describe real world entities or individual objects, and
the meaning of a label in a classification is the set of documents which are
about the entities or individual objects described by the label. Note, that a
label can denote a document, e.g., a book; and, in this case, the classification
semantics of this label is the set of documents which are about the book,
e.g., book reviews. Note that the label semantics is fully captured by the
label itself and nothing else;

– Node: nodes represent complex concepts formed as a combined faceted view
of the real world entities and/or individual objects described by the nodes’
labels and by the labels of all their ascendant nodes. The meaning of a
node in a classification is the set of documents which are about the complex
concept represented by the node. The classification semantics of a given node
is defined by the labels of the nodes on the path from the root to the node;

– Classification: the classification semantics of nodes defines the basis for how
they are used for the classification of documents in a specific classification
algorithm. The set of documents which are populated in a node defines the
semantics of this node at the classification level. In the most general case,
the classification semantics is defined by the nodes’ labels, by the structure
of the classification, and by the employed classification algorithm.

In the rest of this section we briefly describe and discuss two different Clas-
sifications: a relatively old librarian classification hierarchy, the Dewey Decimal
Classification system (DDC), and an example from a modern web catalogue,
namely the DMoz human-edited web directory.

Example 1 (DDC). Since the 19th century, librarians have used DDC to or-
ganize vast amounts of books. DDC divides knowledge into ten different broad
subject areas, called classes, numbered 000 - 999. Materials which are too general
to belong to a specific group (encyclopedias, newspapers, magazines, etc.) are
placed in the 000’s. The ten main classes are divided up into smaller classes by
several sets of subclasses. Smaller divisions (to subdivide the topic even further)
are created by expanding each subclass and adding decimals if necessary. A small
part of the DDC system is shown on Figure 1.



500 Natural Science and Mathematics
520 Astronomy and allied sciences

523 Specific celestial bodies and phenomena
523.1 The universe
523.2 Solar system
523.3 The Earth
523.4 The moon
523.5 Planets

523.51 Mercury
523.52 Venus
523.53 Mars → 523.53HAN
. . .

Fig. 1. A part of the DDC system with an example of book classification

In DDC, the notation (i.e., the system of symbols used to represent the
classes in a classification system) provides a universal language to identify the
class and related classes.

Before a book is placed on the shelves it is:

– classified according to the discipline matter it covers (given the Dewey num-
ber);

– some letters (usually three) are added to this number (usually they represent
the author’s last name);

– the number is used to identify the book and to indicate where the book will be
shelved in the library. Books can be assigned a Dewey number corresponding
to both leaf and non-leaf nodes of the classification hierarchy.

Since parts of DDC are arranged by discipline, not subject, a subject may
appear in more than one class. For example, the subject “clothing” has aspects
that fall under several disciplines. The psychological influence of clothing be-
longs to 155.95 as part of the discipline of psychology; customs associated with
clothing belong to 391 as part of the discipline of customs; and clothing in the
sense of fashion design belongs to 746.92 as part of the discipline of the arts.
However, the final Dewey number associated to a book has to be unique and,
therefore, the classifier needs to impose a classification choice among all the
possible alternatives.

As an example, let’s consider the Dewey number for the following book:
Michael Hanlon, “Pictures of Planet Mars”. A possible classification is Dewey
number: 523.53 HAN and the classification choice for the book is shown in Fig-
ure 1.

The main properties of DDC are:

– the classification algorithm relies on the get-specific rule4: when you add a
new object, get as specific as possible: dig deep into the classification schema,

4 Look at http://docs.yahoo.com/info/suggest/appropriate.html to see how Yahoo!
implements this rule.



looking for the appropriate sub-category; it is a bad practice to submit an
object to a top level category, if one more specific exists. At present, the
enforcement of such rule is left to the experience of the classifier;

– each object is placed in exactly one place in the hierarchy. As a result of
this restriction, a classifier often has to choose arbitrarily among several
reasonable categories to assign the classification code for a new document
(see the above example for “clothing”). Despite the use of documents called
“subject authorities”, which attempt to impose some control on terminology
and classification criteria, there is no guarantee that two classifiers make
the same decision. Thus, a user, searching for information, has to guess the
classifier’s choice in order to decide where to look for, and will typically have
to look in a number of places;

– each non-root node in the hierarchy has only one parent node. This enforces
a tree structure on the hierarchy. ¤

Example 2 (DMoz). The Open Directory Project (ODP), also known as DMoz
(for Directory.Mozilla.org, the domain name of ODP), is a multilingual open
content directory of World Wide Web links owned by America Online that is
constructed and maintained by a community of volunteer editors. ODP uses a
hierarchical ontology scheme for organizing site listings. Data is made available
through an RDF-like dump that is published on a dedicated download server.
Listings on a similar topic are grouped into categories, which can then include
smaller categories. As of March 10, 2006, the RDF held 5,272,517 listings and
over 590,000 multilingual categories. DMoz powers the core directory services
for the most popular portals and search engines on the Web, including AOL
Search, Netscape Search, Google, Lycos, DirectHit, and HotBot, and hundreds
of others [28].

In DMoz, as in DDC, objects (here mainly web links) are classified by a
human classifier following the get-specific rule. In this classification hierarchy, an
object can be often reached from different paths of the hierarchy, thus providing
an efficient way for finding items of interest following different perspectives. This
normally means that the object is classified in two (or more) nodes or that the
object is classified in one node and there are “related” links from other nodes to
the node where the object is classified.

In the following we present an example of classification for a software pro-
gramming document in the DMoz web directory. The document title is “Java
Enterprise in a Nutshell, Second Edition”. In the DMoz web directory, reduced
for sake of presentation, the example title can be found through two different
search paths (see Figure 2), namely:

Top/Business/Publishing and Printing/Books/Computers/

Top/Computers/Programming Languages/Java/ ¤

From the two specific examples we can see that Web catalogues are more
flexible than classifications like Dewey. In fact, their aim is not to position a
resource in a unique position, but rather to position it in such a way, that the



Fig. 2. A part of the DMoz web directory

user, who navigates the catalogue, will be facilitated in finding appropriate or
similar resources related to a given topic.

3 Why Formal Classifications?

There are many methodologies for how to classify objects into classification
hierarchies. These methodologies range from the many rigorous rules “polished”
by librarians during hundreds of years; to less strict, but still powerful rules
of classification in a modern web directory5. What is relevant here, is that in
all these different cases, a human classifier needs to follow a common pattern,
which we summarize in four main steps. These steps are also followed when one
searches for an object by means of classification browsing. The only difference
is in that now the categories are inspected for where to find an object, and not
where to put it. We discuss the four steps below, and we elucidate them on the
example of the part of the DMoz web directory presented in Example 2.
1. Disambiguating labels. The challenge here is to disambiguate natural lan-
guage words and labels. For example, the classifier has to understand that in
the label of node n7 (see Figure 2) the word “Java” has at least three senses,
which are: an island in Indonesia; a coffee beverage; and an object-oriented pro-
gramming language. Moreover, words in a label are combined to build complex
concepts. Consider, for example, the labels at node n4, publishing and printing,
and n5, programming languages. The combination of natural language atomic
elements is used by the classifier to aggregate (like in publishing and printing)
or disambiguate (like in programming languages) atomic concepts;
2. Disambiguating links. At this step the classifier has to interpret links
between nodes. Namely, the classifier needs to consider the fact that each non-
root node is “viewed” in the context of its parent node; and then specify the
5 See, for instance, the DMoz classification rules at http://dmoz.org/guidelines/.



meanings of the nodes’ labels. For instance, the meaning of the label of node n8,
computers, is bounded by the meaning of node n6, business books’ publishing;
3. Understanding classification alternatives. Given an object, the classi-
fier has to understand what classification alternatives for this object are. For
instance, the book “Java Enterprise in a Nutshell, Second Edition” might po-
tentially be put in all the nodes of the hierarchy shown in Figure 2. The reason
for this is that the book is related to both business and technology branches;
4. Making classification choices. Given the set of classification alternatives,
the classifier has to decide, based on a predefined system of rules, where to put
the given object. The system of rules may differ from classification to classifi-
cation, but the get-specific rule is commonly followed. Note, that there may be
more than one category for the classification. For instance, if the get-specific rule
was used, then one would classify the above mentioned book into nodes n7 and
n8, as they most specifically characterize the book.

Humans have proven to be very effective at performing steps 1 and 2, as
described above. However, there are still some challenges to be addressed. The
main challenge in step 1 is dealing with the ambiguities introduced by multiple
possibilities in meaning. One source of this is in that labels contain many con-
junctions “and”’s and “or”’s, whereas they actually mean inclusive disjunction,
i.e., either the first conjunct, or the second, or both. For instance, the phrase
“publishing and printing” means either publishing, or printing, or both. Apart
from the conjunctions, multiple possibilities are introduced also by punctuation
marks denoting enumeration (e.g., the comma), and by words’ senses (recall the
various senses of the word “Java”). It has been shown, that cognitive reasoning
with the presence of multiple possibilities (distinctions) is an error-prone task
for humans [14]. For instance, even if DMoz labels are short phrases, consisting,
on average, of 1.81 tokens, they contain 0.23 conjunctions per label; and average
polysemy for nouns and adjectives is 3.72 per word6. Conjunctions, punctuation,
and words’ senses count together to 3.79 possibilities in meaning per label.

Statistics category Value

Total English labels 477,786
Tokens per label, avg. 1.81
Total links classified in English labels 3,047,643
Duplicate links, % from the total 10.70%
Nouns and adjectives polysemy, avg. 3.72
“and”’s and “or”’s per label, avg. 0.23
Total disjunctions per label, avg. 3.79
Root-to-leaf path length, avg. 7.09
Branching factor, avg. 4.00

Table 1. DMoz statistics

6 A summary of the statistical analysis we performed on DMoz is reported in Ta-
ble 1. In our analysis we excluded branches leading to non-English labels, such as
Top/World/ or Top/Kids and Teens/International/.



The challenge of step 2 is that the classifier may need to follow a long path
of nodes in order to figure out a node’s meaning. It has two consequences: first,
the classifier needs to deal with the growing complexity in ambiguity introduced
by each new label in the path; and, second, the classifier has to consider each
new label in the context of the labels of the ancestor nodes, and, thus, partly
resolve the ambiguity. Note, that, for instance, the average length of a path from
the root to a leaf node in DMoz is 7.09.

Steps 3 and 4 is where the real problems for humans begin. Even with clas-
sifications of average size, it is not easy to find all the classification alternatives.
Consider, for instance, how many times you did not find an email in your own
mail directory. With large classifications this task becomes practically impossi-
ble. For instance, think about possible classification alternatives in DMoz, which
has 477,786 English categories. Thus, at step 3, a human classifier may not be
able to enumerate all the possible classification alternatives for an object.

Step 4 requires abundant expertise and profound methodological skills on the
side of the classifier. However, even an expert makes subjective decisions, what
leads, when a classification is populated by several classifiers, to nonuniform,
duplicate, and error-prone classification. If the get-specific rule is used, then the
classifier has to parse the classification tree in a top-down fashion, considering
at each parent node, which of its child nodes is appropriate for the classification
or for further consideration. The higher the average branching factor in the clas-
sification tree, the higher the probability of that two different classifiers will find
appropriate two different sibling nodes at some level in the tree. This is because
the difference in meaning of the two nodes may be vague or, vice versa, because
the two nodes have distinct meanings and they represent different facets of the
object being classified. In this latter case the classifiers may simply follow dif-
ferent perspectives (facets) when classifying the object (recall the example with
“clothing” from Example 1). Note, that even if DMoz encourages the classifi-
cation of a Web page in a single category, among 3,047,643 links (classified in
English labels), about 10.70% are classified in more than one node7. And, about
91.36% of these are classified in two different nodes. This is not surprising given
that DMoz is populated by more than 70,000 classifiers, and that it has average
branching factor of 4.00.

Given all the above described complexity, humans still outperform machines
in natural language understanding tasks [25], which are the core of steps 1 and
2. Still, the availability of electronic repositories that encode world knowledge
(e.g., [16, 19]), and powerful natural language processing tools (e.g., [22, 16])
allows the machines to perform these steps reasonably well. Moreover, machines
can be much more efficient and effective at steps 3 and 4, if the problem is
encoded in a formal language, which is what we propose to do in our approach.

7 We identified duplicate links by exact equivalence of their URLs.



4 Disambiguating labels

To support an automatic classifier in step 1 of the classification task (as described
in the previous section), we propose to convert classifications into a new struc-
ture, which we call Formal Classification (FC), more amenable to automated
processing.

Definition 2 (Formal Classification) A Formal Classification is a rooted tree
FC = 〈N, E, LF 〉 where N is a finite set of nodes, E is a set of edges on N , and
LF is a finite set of labels expressed in Propositional Description Logic language
LC , such that for any node ni ∈ N , there is one and only one label lFi ∈ LF .

FCs and classifications are related in the sense that a FC is a formalized
copy of a classification. In other words, a FC has the same structure as the
classification, but it encodes the classification’s labels in a formal language (i.e.,
LC), capable of encapsulating, at the best possible level of approximation, their
classification semantics. In the following we will call LC , the concept language.
We use a Propositional Description Logic language for several reasons:

– since natural language labels are meant to describe real world entities, and
not actions, performed on or by entities, or relations between entities, the
natural language labels are mainly constituted of noun phrases; and, there-
fore, there are very few words which are verbs. This makes it very suitable
to use a Description Logic (DL) language as the formal language, as DLs are
a precise notation for representing noun phrases [1];

– The set-theoretic semantics of DL allows us to translate syntactic relations
between words in a label into the logical operators of DL, preserving, at the
best possible level of approximation, the classification semantics of the label.
Below in this section we provide concrete examples and argumentation of the
translation process and its principles;

– a formula in LC can be converted into an equivalent formula in a proposi-
tional logic language with the boolean semantics. Thus, a problem expressed
in LC can be converted into a propositional satisfiability problem8.

Converting classifications into FCs automates step 1, as described in Sec-
tion 3. In our approach we build on the work of Magnini et. al. [17]. We translate
a natural language label into an expression in LC by means of mapping different
parts of speech (POSs), their mutual syntactic relation, and punctuation to the
classification semantics of labels. We proceed in three steps, as discussed below:

1. Build atomic concepts. Senses of common nouns and adjectives become
atomic concepts of LC , whose interpretation is the set of documents about the
entities, which are denoted by the nouns, or which possess the qualities denoted
by the adjectives. We enumerate word senses using WordNet [19], and we write

8 For translation rules from a Propositional Description Logic to a Propositional Logic,
see [6].



x#i to denote an atomic concept corresponding to the ith sense of the word x
in WordNet. For instance, programming#2 is an atomic concept, whose interpre-
tation is the set of documents which are about computer programming; and the
atomic concept red#1 denotes the set of documents which are about red entities,
e.g., red cats or red cars. Proper nouns become atomic concepts of LC , whose
interpretation is the set of documents about the individual objects, denoted by
the proper nouns. They may be long expressions, denoting names of people,
movies, music bands, and so on. Some examples are the movie “Gone with the
Wind”, and the music band “The Rolling Stones”. Apart from proper nouns,
multi-words are recognized, and each their distinct sense becomes an atomic
concept in the concept language9. Words which are not found in WordNet are
assigned distinct atomic concepts, which are uniquely identified by the string
representation of the words (case ignored). Put it differently, words which are
not found in WordNet and whose string representations are equal, are assigned
the same atomic concept. As the output of this step, each word (multi-word, or
proper noun) is associated with one or more atomic concepts, whereas many of
them are associated with the corresponding senses from WordNet.

2. Word sense disambiguation. At this step we discard irrelevant word senses
and corresponding atomic concepts. In part, we follow the approach proposed
in [17]. Namely, if there is a relation found in WordNet between any two senses
of two words in a label, then these senses are retained and other unrelated senses
are discarded. The relation looked for in WordNet is synonymy, hypernymy (i.e.,
the “kind-of” relation, e.g., car is a kind of vehicle), or holonymy (i.e., the “part-
of” relation, e.g., room is a part of a building). If no relation found, then we check
if a relation exists between two WordNet senses by comparing their glosses as
proposed in [9]. In this respect we go beyond what is suggested in [17].

3. Build complex concepts. Complex concepts are built from atomic concepts
as follows: first, we build words’ formulas as the logical disjunction (t) of atomic
concepts corresponding to their senses (remaining after step 2), and we write x∗
to denote the disjunction of the (remaining) senses of word x. For instance, the
noun “Programming” becomes the concept (programming#1 t programming#2),
whose interpretation is the set of documents which are about event scheduling
and/or about computer programming. Second, labels are chunked, i.e., divided
into sequences of syntactically correlated parts of words. We then translate syn-
tactic relations to the logical connectives of LC following a precise pattern. Let
us consider a few examples.

A set of adjectives followed by a noun group is translated into the logical con-
junction (u) of the formulas corresponding to the adjectives and to the nouns.
The interpretation of the resulting concept is the set of documents which are

9 Because of their negligibly small presence, we do not consider verbs. We neither
consider articles, numerals, pronouns and adverbs. However, their share in the labels
of real classifications is reasonably small. When such words are found, they are just
omitted from the label.



about the real world entities denoted by all the nouns, and which possess qual-
ities, denoted by all the adjectives. For instance, the phrase “long cold winter
blizzard” is translated into the concept long∗ u cold∗ u winter∗ u blizzard∗.

Prepositions are also translated into the conjunction. The intuition is that
prepositions denote some commonality between the two objects they relate; and,
in terms of the classification semantics, this “commonality” can be approximated
to the set of documents which are about both objects. For instance, the following
phrases: “books of magic”, “science in society”, and “software for engineering”,
they all denote what the two words, connected by the prepositions, have in
common.

Coordinating conjunctions “and” and “or” are translated into the logical
disjunction. For instance, “flights or trains” and “animals and plants” become
flight∗ t train∗ and animal∗ t plant∗ respectively. Punctuation marks such
as the period (.), the coma (,) and the semicolon (;) are also translated into the
logical disjunction. For instance, the phrase “metro, bus, and trolley” is converted
into the concept metro∗ t bus∗ t trolley∗.

Words and phrases denoting exclusions, such as “excluding”, “except”, “but
not”, are translated into the logical negation (¬). For instance, label “runners
excluding sprinters” becomes the concept runner∗u¬sprinter∗. However, since
they are meant to describe what “there is” in the world, and not what “there
isn’t”, labels contain very few such phrases.

The use of logical connectives, as described above but with the exception of
prepositions, allows it to explicitly encode the classification semantics of labels.
In other words, the interpretation of the resulting formulas explicitly represents
the set of documents which are about the corresponding natural language la-
bels. The translation of prepositions is an approximation, as they may encode
meaning, which only partly can be captured by means of the logical conjunc-
tion. For example, “life in war” and “life after war” will collapse into the same
logical formula, whereas the classification semantics of the two labels is different.

Example 3 (Disambiguating labels in a web directory). Let us consider
how the label of node n2 in the part of the Amazon book directory shown in
Figure 3 can be disambiguated. The label consists of three tokens: “business”,
“and”, and “investing”, whereas the first and the last tokens are recognized as
nouns, and the second token is recognized as a coordinating conjunction. The
noun “business” has nine, and the noun “investing” has one sense in WordNet.
Therefore, after step 1 we have two words with associated atomic concepts as
shown below:

business (business#1, business#2, . . ., business#9), and
investing (investing#1)

At step 2, the senses of the two words are compared, and it is found that
investing#1 (defined as “the act of investing; laying out money or capital
in an enterprise with the expectation of profit”) is a second level hyponym of
business#2 (defined as “the activity of providing goods and services involving
financial and commercial and industrial aspects”). Therefore, the second sense



(and the atomic concept associated with it) of the word “business” is retained
and all the others are discarded.

Fig. 3. Amazon Book Directory

At step 3 we build a complex concept by considering the fact that the coor-
dinating conjunction “and” is translated into the logical disjunction. We have
therefore:

lF2 = business#2 t investing#1 ¤

In order to estimate how much of the information encoded into the labels of
a real classification can be captured using our approach, we have conducted a
grammatical analysis of the DMoz classification. For doing this, we have used
the OpenNLP Tools tokenization and POS-tagging library [22], which reports to
achieve more than 96% accuracy on unseen data10. In Table 2 we show the POS
statistics of the DMoz tokens. Note, that about 77.59% of the tokens (nouns and
adjectives) become concepts, and about 14.69% (conjunctions and prepositions)
become logical connectives of LC . WordNet coverage for common nouns and
adjectives found in DMoz labels is quite high, and constitutes 93.12% and 95.01%
respectively. Detailed analysis of conjunctions and prepositions shows that about
85.26% of them are conjunctions “and”, and about 0.10% are conjunctions “or”.
In our analysis we found no words or phrases which would result into the logical
negation. Only about 4.56% of tokens are verbs and adverbs in all their forms.

Note, that the propositional nature of LC allows us to explicitly encode about
90.13% of the label data in DMoz (i.e., nouns, adjectives, conjunctions “and”
and “or”). Still, this is a rough understated estimation, as we did not take into
account multi-word common and proper nouns. In fact, a manual analysis of the
longest labels, as well as of the ones with verbs, shows that the majority of these
labels represents proper names of movies, games, institutions, music bands, etc.
10 The tool may not function at its expected performance on special data as short

labels because it has been trained on well-formed natural language sentences.



POS Share

Common nouns 71.22%
Proper nouns 0.18%
Adjectives 6.19%
Conjunctions and prepositions 14.69%
Verbs, adverbs 4.56%
Other POSs 3.16%

Table 2. DMoz token statistics

5 Disambiguating Edges

As discussed in Section 2, the classification semantics of nodes codifies the fact
that child nodes are always considered in the context of their parent nodes.
This means that the meaning of a non-root node is the set of documents, which
are about its label, and which are also about its parent node. We encode the
classification semantics of nodes into their property which we call concept at a
node [6]. We write Ci to refer to the concept at node ni, and we define this
notion as:

Ci =
{

lFi if ni is the root of FC
lFi u Cj if ni is not the root of FC, where nj is the parent of ni

(1)

There may be two meaningful relations between the concept at a parent node,
and the label of its child node, as represented in Figure 4:

– in case (a) the label of the child node is about the parent node, but it is also
about something else. In this case the parent node specializes the meaning
of the child node by bounding the interpretation of the child node’s label
with the interpretation of the concept at the parent node. For instance, think
about a classification where the root node is labeled “Italy” and its sole child
node is labeled “Pictures” (see Figure 4a). A human can understand that
the meaning of the child node is “pictures of Italy” and not “pictures of
Germany”, for example. In the corresponding FC this knowledge is encoded
into the concept at node C2 = italy ∗ u picture∗;

– in case (b) the child node represents a specification of the parent node, and
their relation can be, for instance, the “is-a” or the “part-of” relation. Note,
that in this case, differently from case (a), the parent node does not influence
the meaning of the child node. Suppose that in the previous example the child
node’s label is “Liguria” (see Figure 4b). A human can understand that the
meaning of this node is the same as of its label. In the corresponding FC this
knowledge is encoded into the concept at node C2 = italy ∗ u liguria∗,
which can be simplified to C2 = liguria#1, taking into account the fact
that both words “Italy” and “Liguria” have only one sense in WordNet, and
given that the corresponding axiom (liguria#1 v italy#1) is memorized
in some background knowledge base.



Fig. 4. Edge semantics in FCs

Note, that applying Equation 1 recursively, we can compute the concept at
any non-root node ni as the conjunction of the labels of all the nodes on the
path from the root of the FC, n1, to ni. This corresponds to how the notion of
concept at a node is defined in [7], namely:

Ci = lF1 u lF2 u . . . u lFi (2)

The concept at a node encodes, but only to a certain extent, the path from the
root to the node. In fact, there may be more than one way to reconstruct a path
from a concept. Atomic concepts in a concept at a node may be “distributed”
differently among different number of nodes, which, in turn, may have a different
order in the path. The number of nodes may range from one, when the concept
at the node is equivalent to the node’s label, to the number of clauses in the
CNF equivalent of the concept. However, all the possible paths converge to the
same semantically equivalent concept. Consider, for instance, node n8 in the
classification shown in Figure 2. The two paths below will converge to the same
concept for the node11:

top/Publishing and Printing/Business Books/Computers/

top/Business/Publishing and Printing/Computer Books/

We use the notion of concept at a node to define another structure which we
call Normalized Formal Classification (NFC).

Definition 3 (Normalized Formal Classification) A Normalized Formal
Classification is a rooted tree NFC = 〈N,E, LN 〉 where N is a finite set of
nodes, E is a set of edges on N , and LN is is a finite set of labels expressed in
LC , such that for any node ni ∈ N , there is one and only one label lNi ∈ LN and
lNi ≡ Ci.

Note, that the main characteristic of NFCs, that distinguishes them from
FCs, is the fact that labels of child nodes are always more specific than the
labels of their parent nodes. Interestingly, if a taxonomic classification, i.e., a
11 For sake of presentation we give these examples in natural language.



classification with only “is-a” and “part-of” links, is converted into a FC, then
the latter is also a NFC.

Apart from this, NFCs have a number of important properties relevant to
classifications, discussed below:

– the interpretation of nodes’ labels is the set of documents which can be
classified in these nodes. We underline the “can” since, as we discuss in the
next section, documents which are actually classified in the nodes are often
a subset of the interpretation of the labels in NFCs;

– two nodes, representing in a classification the same real world entities, will
have semantically equivalent labels in the NFC. This fact can be exploited for
automatic location and/or prevention of adding of such “duplicate” nodes.
As an example, consider the different paths that lead to the same concept
as described earlier in this section;

– NFCs are full-fledged lightweight ontologies, suitable for the automation of
the core classification tasks, such as document classification and query an-
swering.

The consideration of the path from the root to any given node allows us not
only to compute the concept at that node which leads to the properties discussed
above, but also to further disambiguate the senses of the words in its label taking
into account the context of the path and, accordingly, to delete corresponding
atomic concepts from its label in the NFC. In this task we apply exactly the
same technique as the one discussed in Section 4 for sense disambiguation in
labels with the only difference in that now all the remaining words’ senses in all
the labels on the path to the root are compared.

Example 4 (Disambiguating edges in a web directory). Recall the ex-
ample of the part of the DMoz directory shown in Figure 2 and let us see how
the concept at node n7 can be computed. Remember the three senses of the
word “java” (which is the label of n7) discussed earlier in the paper, and con-
sider the parent node’s label, “programming languages”, which is recognized as
a multi-word with only one sense whose gloss is “a language designed for pro-
gramming computers”. Comparing this gloss with the gloss of the third sense
of the word “java” (defined as “a simple platform-independent object-oriented
programming language...”) results that the similarity of the two glosses exceeds
a certain threshold and, therefore, a relation is found between these two senses.
We therefore compute the concept at node n7 as:

lN7 = (computer#1t computer#2)u programming language#1u java#3¤

6 Document classification

Before some document d can be classified, it has to be assigned an expression in
LC , which we call the document concept, written Cd. The assignment of concepts
to documents is done in two steps: first, a set of n keywords is retrieved from the
document using text mining techniques (see, for example, [23]); the keywords



are then converted into a concept by means of the conjunction of the formulas
representing the keywords, translated to LC as discussed in Section 4.

The interpretation of the document concept of any document includes the
document itself (i.e., d ∈ (Cd)I) as well as other documents which have equiva-
lent or more specific document concepts. In Figure 5 we show an example of how
a document and the interpretation of its concept can be interrelated. There, the
interpretation of the concept of document d1, Cd1 , includes d1 itself, d2, whose
concept is equivalent to Cd1 , and d3, whose concept Cd3 is more specific than
Cd1 .

Fig. 5. Document concept

We say that node ni is a classification alternative for the classification of
some document d with concept Cd, if Cd v lNi . In fact, if this relation holds,
and given that d ∈ (Cd)I , it follows that d ∈ (lNi )I , i.e., document d belongs
to the set of documents which can be classified in ni. For any given document
d and a NFC, we compute the set of classification alternatives for d in the NFC
as follows:

A(Cd) = {ni|Cd v lNi } (3)

By computing Equation 3, we can automate step 3 described in Section 3. The
automation of step 4, i.e., making classification choices, depends on what clas-
sification algorithm is used. Below we show how it can be automated for some
set A of classification alternatives if the get-specific rule (see Section 3) is used:

C(A) = {ni ∈ A|@nj ∈ A (i 6= j), such that lNj v lNi } (4)

The set C(A) includes all the nodes in the NFC, whose labels are more general
than the document concept, and more specific among all such labels. As labels
of child nodes in NFCs are always more specific than the labels of their parent
nodes, C(A) consists of nodes which lie as low in the CNF tree as possible, and
which are still classification alternatives for the given document. Note, that the
get-specific rule applies not only to nodes located on the same path from the
root, but also to nodes located in different branches. For instance, a document



about computer graphics will not be classified in the node top/computers/ if
the more specific node top/arts/computers/ exists.

Formula 4 implies that the set of documents classified in some node ni may
(and, in most cases will) be a subset of the interpretation of its label lNi . In
fact, the set of documents which are actually classified in ni excludes those,
which belong to the interpretation of labels, which are more specific than lNi . We
encode this set in the concept lCi which univocally identifies the set of documents
classified in node ni, and, therefore, defines the classification level semantics of
ni in the NFC. We compute lCi as follows:

lCi = lNi u ¬
⊔

(lNj |j 6= i, lNj v lNi ) (5)

Noteworthy, the concepts which represent the classification semantics at the
three levels discussed in Section 2 are related by the subsumption relation as
shown below:

lCi v lNi v lFi (6)

Computing Equations 3, 4 and 5 requires verifying whether the subsumption
relation holds between two formulas in LC . In a more general case, if we need to
check whether a certain relation rel (which can be v, w, ≡, or ⊥) holds between
two concepts A and B, given some knowledge base KB, which represents our a
priori knowledge, we construct a propositional formula according to the pattern
shown in Equation 7, and check it for validity:

KB → rel(A,B) (7)

The intuition is that KB encodes what we know about concepts A and B, and
rel(A,B) holds only if it follows from what we know. In our approach KB is
built as the conjunction of a set of axioms which encode the relations that hold
between atomic concepts in A and B. Relation rel(A,B) is the formula encoding
the relation between concepts A and B translated to the propositional logic ac-
cording to the rules proposed in [6]. As discussed in Section 4, atomic concepts
in LC are mapped to the corresponding natural language words’ senses. These
senses may be lexically related through the synonymy, antonymy, hypernymy, or
holonymy relations. These relations can be translated into axioms, which explic-
itly capture the classification semantics of the relation that holds between the
two senses. Thus, for instance, the set of documents which are about cars is a
subset of the set of documents which are about a hypernym of the word “car”,
vehicle. The idea, therefore, is to find the lexical relations using WordNet and to
translate synonymy into the logical equivalence, antonymy into the disjointness,
hypernymy and holonymy into the subsumption relation in LC .

Example 5 (Document classification). As en example, recall the classifica-
tion in Figure 2, and suppose that we need to classify the book: “Java Enterprise
in a Nutshell, Second Edition”, whose concept is java#3 u enterprise#2 u
book#1. It can be shown, by means of propositional reasoning, that the set of



classification alternatives includes all the nodes of the corresponding NFC. For
sake of presentation we provide concrete formulas only for nodes n7 and n8,
whose labels are:

lN7 = computer ∗ uprogramming ∗ ulanguage ∗ ujava∗, and
lN8 = business ∗ u(publishing ∗ tprinting∗) u publishing ∗

u books ∗ ucomputer∗.
We can extract the following knowledge from WordNet: the programming lan-
guage Java is a kind of programming languages, and it is a more specific concept
than computer is; books are related to publishing; and enterprise is a more spe-
cific concept than business is. We encode this knowledge in the following set of
axioms:

a1 = (java#3 v pr language#1); a3 = (book#1 v publishing#1);
a2 = (java#3 v computer#1); a4 = (enterprise#1 v business#2).

Next, we translate the axioms and the labels into the propositional logic lan-
guage, and we verify if the condition in Formula 3 holds for the two labels by
constructing two formulas, following the pattern of Equation 7, as shown below:

(a2 ∧ a3 ∧ a4) → (Cd → lN8 ); (a1 ∧ a2) → (Cd → lN7 ).
We then run a SAT solver on the above formulas, which shows that they are
tautologies. It means that both nodes n7 and n8 are classification alternatives
for the classification of the book. Among all the classification alternatives, only
these two nodes satisfy the get-specific rule, and, therefore, they are the final
classification choices for the given book. The latter can be shown by computing
Equation 4 by means of propositional reasoning. ¤

Note, that the edges of the NFC are not considered in document classification.
In fact, the edges of the NFC become redundant, as their information is implicitly
encoded in the labels. Note that given a set of labels, there may be several ways
to reconstruct the set of edges of a NFC. However, from the classification point
of view, all these NFCs are equivalent, as they classify documents identically.
In other words, nodes with equivalent labels are populated with the same set of
documents.

7 Query answering

When the user searches for a document, she defines a set of keywords or a phrase,
which is then converted into an expression in LC using the same techniques as
discussed in Section 4. We call this expression, a query concept, written Cq. We
define the answer Aq to a query q as the set of documents, whose concepts are
more specific than the query concept Cq:

Aq = {d|Cd v Cq} (8)

Searching directly on all the documents may become prohibitory expensive as
classifications may contain thousands and millions of documents. NFCs allow us



to identify the maximal set of nodes which contain only answers to a query, which
we call, the sound classification answer to a query (written Nq

s ). We compute
Nq

s as follows:
Nq

s = {ni|lNi v Cq} (9)

In fact, as Cd v lNi for any document d classified in any node ni ∈ Nq
s (see

Formulas 3 and 4), and lNi v Cq (as from Formula 9 above), then Cd v Cq.
Thus, all the documents classified in the set of nodes Nq

s belong to the answer
Aq (see Formula 8).

We extend Nq
s by adding nodes, which constitute the classification set of a

document d, whose concept is Cd ≡ Cq. We call this set, the query classification
set, written Clq; and we compute it following Formula 4. In fact, nodes in Clq

may contain documents satisfying Formula 8, for instance, documents whose
concepts are equivalent to Cq.

Thus, for any query q, the user can compute a sound query answer Aq
s by

taking the union of two sets of documents: the set of documents which are
classified in the set of nodes Nq

s (computed as {d ∈ ni|ni ∈ Nq
s }); and the set of

documents which are classified in the nodes from the set Clq and which satisfy
Formula 8 (computed as {d ∈ ni|ni ∈ Clq, Cd v Cq}). We have therefore:

Aq
s = {d ∈ ni|ni ∈ Nq

s } ∪ {d ∈ ni|ni ∈ Clq, Cd v Cq} (10)

Under the given definition, the answer to a query is not restricted to the doc-
uments classified in the nodes, whose concepts are equivalent to the concept of
the query. Documents from nodes, whose concepts are more specific than the
query concept are also returned. For instance, a result for the above mentioned
query may also contain documents about Java beans.

Note that the proposed approach to query answering allows it to search by
comparing the meaning of the query, of the nodes, and of the documents by
means of propositional reasoning on their formulas. For instance, in our ap-
proach documents about “Ethiopian villages” will be returned as the result of
the user searching for “African settlements”. This makes a fundamental differ-
ence with the standard search techniques based on information retrieval and
word indexing. These are based on exact term matching and on ranking the
results following relative term frequencies; no query semantics is taken into ac-
count in these approaches.

Example 6 (Query answering). Suppose that the user defines a query to
the Amazon NFC which is translated to the following concept: Cq = java#3 t
cobol#1, where cobol#1 is “a common business-oriented language”. It can be
shown, that Nq

s = {n7, n8} (see Figure 3 for the Amazon classification). However,
this set does not include node n5, which contains the book “Java for COBOL
Programmers (2nd Edition)”. The relevance of node n5 to the query can be
identified by computing the query classification set for query q, which in fact
consists of the single node n5, i.e., Clq = {n5}. However, n5 may also contain
irrelevant documents, which are excluded from the query result by computing



Formula 10. ¤

For what regards the complexity of the query answering and document clas-
sification algorithms, since both are reduced to the validity problem, they rep-
resent co-NP-complete problems. However, as discussed in [10], in most of the
cases the time complexity is (or can be reduced to) polynomial.

8 Related Work

In our work we adopt the notion of the concept at a node as first introduced in [6]
and further elaborated in [7]. Moreover, the notion of label of a node in a FC,
semantically corresponds to the notion of the concept of a label introduced in [7].
In [7] these notions play the key role in the identification of semantic mappings
between nodes of two schemas. In this paper, these are the key notions needed to
define NFCs which can be used for document classification and query answering
in a completely new way.

This work as well as the work in [6, 7] mentioned above is crucially related
and depends on the work described in [2, 17]. In particular, in [2], the authors, for
the first time, introduce the idea that in classifications, natural language labels
should be translated in logical formulas, while, in [17], the authors provide a
detailed account of how to perform this translation process. The work in [6, 7]
improves on the work in [2, 17] by understanding the crucial role that concepts
at nodes have in matching heterogeneous classifications and how this leads to a
completely new way to do matching. This paper, for the first time, recognizes
the crucial role that the ideas introduced in [2, 6, 7, 17] have in the construction
of a new theory of classification, and in introducing the key notion of FC.

In [24], the authors propose a very similar approach to converting natural
language labels in classifications to concept language formulas. Our approach is
different in at least two respects. First, the target application in [24] is matching,
whereas in the present paper we focus on document classification and query
answering. Second, DL roles are used in [24] to encode the meaning of labels.
The advantage of our approach is in that, while using a simpler subset of DLs,
we are able to explicitly capture the semantics of a large portion of the label
data in a real classification.

A related approach to converting generic thesauri and related resources from
their native format to RDF(S) and OWL was recently proposed in [30]. In that
work, the authors discuss a set of guidelines for how to perform a conversion of
syntactic elements (e.g., structure, entity names) and semantic elements (e.g.,
property types) from the native format to RDF(S) and OWL. Our approach is
different because it aims at extracting semantic information implicitly encoded
in the classification schema (by using NLP) in order to enable the automation
through reasoning, and not to perform meaning-preserving structure conversion
from one format to another in order to improve interoperability as it is the case
in [30].



The approach presented in this paper can potentially allow for automatic
classification of objects into user-defined hierarchies with no or little intervention
of the user. This, in turn, provides the user with less control over the classification
process. Therefore, for any classified object, the user may want to be given
explanatory details for why the object was classified in one and not another
way. From this perspective, the work presented in [18] is particularly relevant to
our approach, as it allows to monitor the reasoning process and present the user
with the trace of the main reasoning steps which led to the obtained conclusion.

A lot of work in information theory, and more precisely on formal concept
analysis (see for instance [31]) has concentrated on the study of concept hi-
erarchies. NFCs are very similar to what in formal concept analysis are called
concept hierarchies with no attributes. The work in this paper can be considered
as a first step towards providing a computational theory of how to transform the
“usual” natural language classifications into concept hierarchies.

The document classification and query answering algorithms, proposed in this
paper, are similar to what in the Description Logic (DL) community is called
realization and retrieval respectively. The fundamental difference between the
two approaches is in that in the DL approach the underlying structure for the
classification is not predefined by the user, but is built bottom-up from atomic
concepts by computing the partial order on the subsumption relation. Interested
readers are referenced to [12], where the authors propose sound and complete
algorithms for realization and retrieval. In our approach, classifications are built
in the top-down fashion by the user and in the way decided by the user. There-
fore, after their conversion to NFCs, the order of labels imposed by the edges
does not necessarily represent the partial order, which requires algorithms and
optimizations different from those used in the DL approach.

In Computer Science, the term classification is primarily seen as the process
of arranging a set of objects (e.g., documents) into categories or classes. There
exist a number of different approaches which try to build classifications bottom-
up, by analyzing the contents of documents. These approaches can be grouped
in two main categories: supervised classification, and unsupervised classification.
In the former case, a small set of training examples needs to be pre-populated
into the categories in order to allow the system to automatically classify a larger
set of objects (see, for example, [5, 20]). The latter approach uses various ma-
chine learning techniques to classify sets of objects (e.g., data clustering [13]),
and it usually has much lower precision than the former one. There exist some
approaches that apply (mostly) supervised classification techniques to the prob-
lem of documents classification into hierarchies [15, 26]. The classifications built
following our approach are better and more natural than those built following
these approaches. They are in fact constructed top-down, as chosen by the user
and not constructed bottom-up, as they come out of the document analysis.
Moreover, in our approach there is no need to have a pre-populated set of doc-
uments in order to classify another, larger set. Last but not least, our approach
has the ability to classify documents one-by-one and not only in sets by con-



trasting reciprocal properties of documents in the set as it is done in the above
approaches.

9 Future Work and Conclusions

In this paper we have introduced the notion of Formal Classification, namely
of a classification where labels are written in a propositional concept language.
Formal Classifications have many advantages over standard classifications all
deriving from the fact that formal language formulas can be reasoned about
far more easily than natural language sentences. In this paper we have high-
lighted how this can be done to perform automatic document classification and
semantics-aware query answering. Our approach has the potential, in principle,
to allow for the automatic classification of (say) the Yahoo! documents into the
Yahoo! directories.

The primary goal of this paper is to present the theory of how to translate
classifications into Lightweight Ontologies and how they can be used for the au-
tomation of essential tasks on classifications. Therefore, large-scale experiments
are out of the scope of the present paper even if the first experiments show
the proof of concept of our approach. However, the results shown in the related
approach of semantic matching allow us to expect promising results for our ap-
proach. In fact, in both cases, the core underlying technologies are NLP (applied
to classifications) and propositional reasoning, which gives us a reason to think
that the results of the two approaches will be comparable. Note that semantic
matching outperforms other similar approaches in some primary indicators [8].

However much more can be done. Our future work includes testing the feasi-
bility of our approach with very large sets of documents, such as those classified
in the DMOZ directory, as well as the development of a sound and complete
query answering algorithm. Apart from this, we will explore the ways of com-
bining the proposed approach to query answering with those based on document
indexing and keywords-based search. Our future work also includes a study of
how dynamic changes made to classifications can be fully supported at the level
of the corresponding FCs and NFCs.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The Description Logic Handbook : Theory, Implementation and
Applications. Cambridge University Press, 2003.

2. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach
and an application. In Proc. of the 2nd International Semantic Web Conference
(ISWO’03). Sanibel Islands, Florida, USA, October 2003.

3. Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide.
Forest P.,U.S., December 1996.

4. eCl@ss: Standardized Material and Service Classification. see http://www.eclass-
online.com/.



5. G.Adami, P.Avesani, and D.Sona. Clustering documents in a web directory. In
Proceedings of Workshop on Internet Data management (WIDM-03), 2003.

6. F. Giunchiglia and P. Shvaiko. Semantic matching. Knowledge Engineering Review,
18(3):265–280, 2003.

7. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: An algorithm and an
implementation of semantic matching. In Proceedings of ESWS’04, 2004.

8. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In
CoopIS, 2005.

9. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Meaning
Coordination and Negotiation workshop, ISWC, 2004.

10. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.
In ESWC, 2005.

11. A.D. Gordon. Classification. Monographs on Statistics and Applied Probability.
Chapman-Hall/CRC, Second edition, 1999.

12. Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: DL
reasoning with large numbers of individuals. In Proc. of the 2004 Description Logic
Workshop (DL 2004), pages 31–40, 2004.

13. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

14. Johnson-Laird. Mental Models. Harvard University Press, 1983.
15. Daphne Koller and Mehran Sahami. Hierarchically classifying documents using

very few words. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th In-
ternational Conference on Machine Learning, pages 170–178, Nashville, US, 1997.
Morgan Kaufmann Publishers, San Francisco, US.

16. Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33–38, 1995.

17. Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the
semantics hidden in schema models. In: Proceedings of the Workshop on Human
Language Technology for the Semantic Web and Web Services, held at ISWC-2003,
Sanibel Island, Florida, October 2003.

18. D. L. McGuinness, P. Shvaiko, F. Giunchiglia, and P. Pinheiro da Silva. Towards
explaining semantic matching. In International Workshop on Description Logics
at KR’04, 2004.

19. George Miller. WordNet: An electronic Lexical Database. MIT Press, 1998.
20. Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.

Text classification from labeled and unlabeled documents using EM. Machine
Learning, 39(2/3):103–134, 2000.

21. Natalya F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33(4):65–70, 2004.

22. The OpenNLP project. See http://opennlp.sourceforge.net/.
23. Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

Computing Surveys, 34(1):1–47, 2002.
24. Luciano Serafini, Stefano Zanobini, Simone Sceffer, and Paolo Bouquet:. Matching

hierarchical classifications with attributes. In ESWC, pages 4–18, 2006.
25. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, 1984.
26. Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In

ICDM, pages 521–528, 2001.
27. MeSH: the National Library of Medicine’s controlled vocabulary thesaurus. see

http://www.nlm.nih.gov/mesh/.



28. DMoz: the Open Directory Project. See http://dmoz.org/.
29. Michael Uschold and Michael Gruninger. Ontologies and semantics for seamless

connectivity. SIGMOD Rec., 33(4):58–64, 2004.
30. Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and Bob

Wielinga. A method for converting thesauri to RDF/OWL. In the Third Inter-
national Semantic Web Conference (ISWC’04), number 3298, pages 17–31, Hi-
roshima, Japan, November 2004. Lecture Notes in Computer Science.

31. Rudolf Wille. Concept lattices and conceptual knowledge systems. Computers and
Mathematics with Applications, 23:493–515, 1992.


